Potential-Induced Formation of Pt-Oxide Surfaces

نویسنده

  • Timo Jacob
چکیده

Using the extended ab initio atomistic thermodynamics approach together with density functional theory calculations the interfacial structure and composition of Pt-electrodes in electrochemical environments at elevated electrode potentials was studied. Focusing on the electrode potential region, at which the oxide-formation occurs, the bulk systems and all lowindex surfaces of α-PtO2, β-PtO2, and PtO bulk-oxides were calculated. On the basis of the bulk-oxide formation energies we first deduced the stability ranges at which the bulk-oxides are the thermodynamically stable phases. In agreement with experimental observations, we find that at experimental temperature and pressure conditions α-PtO2 and β-PtO2 bulk-oxides are stable above 1.2 V, while PtO requires ∆φ >1.3 V. Afterwards the corresponding (p,T,φ)phase diagrams of surface structures were obtained, showing a preference for α-PtO2(001), βPtO2(110), and PtO(100) respectively, having bulk-like compositions even on their surfaces. However, in case of thin oxide layers a PtO composition might also be present.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction

Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...

متن کامل

DFT Study of Nitrous Oxide Adsorption on the Surface of Pt-Decorated Graphene

In the present study we search potential of Pt-decorated graphene (PtG) as a new nanostructure adsorbent for nitrous oxide (N2O) using density functional theory (DFT). After fully relaxation of different possible orientations of N2O-PtG complex, we distinguished two optimized configurations for this system; 1- terminal N-side of gas is oriented towards Pt so that the molec...

متن کامل

Interactive Surface Chemistry of CO2 and NO2 on Metal Oxide Surfaces: Competition for Catalytic Adsorption Sites and Reactivity

Interactive surface chemistry of CO2 and NO2 on BaOx/Pt(111) model catalyst surfaces were investigated via X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques with a particular emphasis on the competition between different adsorbates for the catalytic adsorption sites and adsorbateinduced morphological changes. After NO2 adsorption, nitrated BaOx/Pt(111...

متن کامل

In situ studies of NO reduction by H2 over Pt using surface X-ray diffraction and transmission electron microscopy.

In situ surface X-ray diffraction and transmission electron microscopy at 1 bar show massive material transport of platinum during high-temperature NO reduction with H2. A Pt(110) single-crystal surface shows a wide variety of surface reconstructions and extensive faceting of the surface. Pt nanoparticles change their morphology depending on the gas composition: They are faceted in hydrogen-ric...

متن کامل

The local electronic properties of individual Pt atoms adsorbed on TiO2(110) studied by Kelvin probe force microscopy and first-principles simulations.

Noble metal nanostructures dispersed on metal oxide surfaces have applications in diverse areas such as catalysis, chemical sensing, and energy harvesting. Their reactivity, chemical selectivity, stability, and light absorption properties are controlled by the interactions at the metal/oxide interface. Single-atom metal adsorbates on the rutile TiO2(110)-(1 × 1) surface have become a paradigmat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007